125. Java 集合
简介
Collection
Java 标准库自带的 java.util 包提供了集合类:Collection,它是除 Map 外所有其他集合类的根接口。Java 的 java.util 包主要提供了以下三种类型的集合:
- List:一种有序列表的集合,例如,按索引排列的 Student 的 List;
- Set:一种保证没有重复元素的集合,例如,所有无重复名称的 Student 的 Set;
- Map:一种通过键值(key-value)查找的映射表集合,例如,根据 Student 的 name 查找对应 Student 的 Map。
Java 集合的设计有几个特点:一是实现了接口和实现类相分离,例如,有序表的接口是 List,具体的实现类有 ArrayList,LinkedList 等,二是支持泛型,我们可以限制在一个集合中只能放入同一种数据类型的元素,例如:
1
List<String> list = new ArrayList<>(); // 只能放入 String 类型
最后,Java 访问集合总是通过统一的方式——迭代器(Iterator)来实现,它最明显的好处在于无需知道集合内部元素是按什么方式存储的。
由于 Java 的集合设计非常久远,中间经历过大规模改进,我们要注意到有一小部分集合类是遗留类,不应该继续使用:
- Hashtable:一种线程安全的 Map 实现;
- Vector:一种线程安全的 List 实现;
- Stack:基于 Vector 实现的 LIFO 的栈。
还有一小部分接口是遗留接口,也不应该继续使用:
- Enumeration
:已被 Iterator 取代。
小结
- Java 的集合类定义在 java.util 包中,支持泛型,主要提供了 3 种集合类,包括 List,Set 和 Map。Java 集合使用统一的 Iterator 遍历,尽量不要使用遗留接口。
List
List 是最基础的一种集合:它是一种有序列表。
List 的行为和数组几乎完全相同:List 内部按照放入元素的先后顺序存放,每个元素都可以通过索引确定自己的位置,List 的索引和数组一样,从 0
开始。
数组和 List 类似,也是有序结构,如果我们使用数组,在添加和删除元素的时候,会非常不方便。
在实际应用中,需要增删元素的有序列表,我们使用最多的是 ArrayList。实际上,ArrayList 在内部使用了数组来存储所有元素。例如,一个 ArrayList 拥有 5 个元素,实际数组大小为 6(即有一个空位)
当添加一个元素并指定索引到 ArrayList 时,ArrayList 自动移动需要移动的元素;
然后,往内部指定索引的数组位置添加一个元素,然后把 size 加 1;
继续添加元素,但是数组已满,没有空闲位置的时候,ArrayList 先创建一个更大的新数组,然后把旧数组的所有元素复制到新数组,紧接着用新数组取代旧数组;
现在,新数组就有了空位,可以继续添加一个元素到数组末尾,同时 size 加 1;
可见,ArrayList 把添加和删除的操作封装起来,让我们操作 List 类似于操作数组,却不用关心内部元素如何移动。
List 接口
- 在末尾添加一个元素:
boolean add(E e)
- 在指定索引添加一个元素:
boolean add(int index, E e)
- 删除指定索引的元素:
int remove(int index)
- 删除某个元素:
int remove(Object e)
- 获取指定索引的元素:
E get(int index)
- 获取链表大小(包含元素的个数):
int size()
但是,实现 List 接口并非只能通过数组(即 ArrayList 的实现方式)来实现,另一种 LinkedList 通过 “链表” 也实现了 List 接口。在 LinkedList 中,它的内部每个元素都指向下一个元素:
1
2
3 ┌───┬───┐ ┌───┬───┐ ┌───┬───┐ ┌───┬───┐
HEAD ──>│ A │ ●─┼──>│ B │ ●─┼──>│ C │ ●─┼──>│ D │ │
└───┴───┘ └───┴───┘ └───┴───┘ └───┴───┘
我们来比较一下 ArrayList 和 LinkedList:
ArrayList | LinkedList | |
---|---|---|
获取指定元素 | 速度很快 | 需要从头开始查找元素 |
添加元素到末尾 | 速度很快 | 速度很快 |
在指定位置添加 / 删除 | 需要移动元素 | 不需要移动元素 |
内存占用 | 少 | 较大 |
通常情况下,我们总是优先使用 ArrayList。 |
List 的特点
使用 List 时,我们要关注 List 接口的规范。List 接口允许我们添加重复的元素,即 List 内部的元素可以重复:
1
2
3
4
5
6
7
8
9public class Main {
public static void main(String[] args) {
List<String> list = new ArrayList<String>();
list.add("apple"); // size=1
list.add("pear"); // size=2
list.add("apple"); // 允许重复添加元素,size=3
System.out.println(list.size());
}
}
List 还允许添加 null:
1
2
3
4
5
6
7
8
9
10public class Main {
public static void main(String[] args) {
List<String> list = new ArrayList<>();
list.add("apple"); // size=1
list.add(null); // size=2
list.add("pear"); // size=3
String second = list.get(1); // null
System.out.println(second);
}
}
创建 List
除了使用 ArrayList 和 LinkedList,我们还可以通过 List 接口提供的 of() 方法,根据给定元素快速创建 List:
除了使用 ArrayList 和 LinkedList,我们还可以通过 List 接口提供的 of() 方法,根据给定元素快速创建 List:
1
List<Integer> list = List.of(1, 2, 5);
但是 List.of() 方法不接受 null 值,如果传入 null,会抛出 NullPointerException 异常。
遍历List
和数组类型,我们要遍历一个 List,完全可以用 for 循环根据索引配合 get(int) 方法遍历:
1
2
3
4
5
6
7
8
9public class Main {
public static void main(String[] args) {
List<String> list = List.of("apple", "pear", "banana");
for (int i=0; i<list.size(); i++) {
String s = list.get(i);
System.out.println(s);
}
}
}
但这种方式并不推荐,一是代码复杂,二是因为get(int)方法只有ArrayList的实现是高效的,换成LinkedList后,索引越大,访问速度越慢。
所以我们要始终坚持使用迭代器Iterator来访问List。Iterator本身也是一个对象,但它是由List的实例调用iterator()方法的时候创建的。Iterator对象知道如何遍历一个List,并且不同的List类型,返回的Iterator对象实现也是不同的,但总是具有最高的访问效率。
Iterator对象有两个方法:boolean hasNext()
判断是否有下一个元素,E next()
返回下一个元素。因此,使用Iterator遍历List代码如下:
1
2
3
4
5
6
7
8
9public class Main {
public static void main(String[] args) {
List<String> list = List.of("apple", "pear", "banana");
for (Iterator<String> it = list.iterator(); it.hasNext(); ) {
String s = it.next();
System.out.println(s);
}
}
}
有童鞋可能觉得使用 Iterator 访问 List 的代码比使用索引更复杂。但是,要记住,通过 Iterator 遍历 List 永远是最高效的方式。并且,由于 Iterator 遍历是如此常用,所以,Java 的 for each 循环本身就可以帮我们使用 Iterator 遍历。把上面的代码再改写如下:
1
2
3
4
5
6
7
8public class Main {
public static void main(String[] args) {
List<String> list = List.of("apple", "pear", "banana");
for (String s : list) {
System.out.println(s);
}
}
}
上述代码就是我们编写遍历 List 的常见代码。
实际上,只要实现了 Iterable 接口的集合类都可以直接用 for each 循环来遍历,Java 编译器本身并不知道如何遍历集合对象,但它会自动把 for each 循环变成 Iterator 的调用,原因就在于 Iterable
接口定义了一个 Iterator<E> iterator()
方法,强迫集合类必须返回一个 Iterator
实例。
Note: Java的
for - each
遍历不是只读的。
List和Array转换
把List变为Array有三种方法,第一种是调用toArray()方法直接返回一个Object[]数组:
1
2
3
4
5
6
7
8
9public class Main {
public static void main(String[] args) {
List<String> list = List.of("apple", "pear", "banana");
Object[] array = list.toArray();
for (Object s : array) {
System.out.println(s);
}
}
}
这种方法会丢失类型信息,所以实际应用很少。
第二种方式是给 toArray(T[]) 传入一个类型相同的 Array,List 内部自动把元素复制到传入的 Array 中:
1
2
3
4
5
6
7
8
9public class Main {
public static void main(String[] args) {
List<Integer> list = List.of(12, 34, 56);
Integer[] array = list.toArray(new Integer[3]);
for (Integer n : array) {
System.out.println(n);
}
}
}
注意到这个 toArray(T[])
方法的泛型参数 <T>
并不是 List 接口定义的泛型参数 <E>
,所以,我们实际上可以传入其他类型的数组,例如我们传入 Number 类型的数组,返回的仍然是 Number 类型:
注意到这个 toArray(T[]) 方法的泛型参数 <T>
并不是 List 接口定义的泛型参数 <E>
,所以,我们实际上可以传入其他类型的数组,例如我们传入 Number 类型的数组,返回的仍然是 Number 类型:
1
2
3
4
5
6
7
8
9public class Main {
public static void main(String[] args) {
List<Integer> list = List.of(12, 34, 56);
Number[] array = list.toArray(new Number[3]);
for (Number n : array) {
System.out.println(n);
}
}
}
但是,如果我们传入类型不匹配的数组,例如,String[]
类型的数组,由于 List
的元素是 Integer
,所以无法放入 String 数组,这个方法会抛出 ArrayStoreException
。
如果我们传入的数组大小和 List
实际的元素个数不一致怎么办?根据 List 接口的文档,我们可以知道:
如果传入的数组不够大,那么 List
内部会创建一个新的刚好够大的数组,填充后返回;如果传入的数组比 List
元素还要多,那么填充完元素后,剩下的数组元素一律填充 null。
实际上,最常用的是传入一个 “恰好” 大小的数组:
1
Integer[] array = list.toArray(new Integer[list.size()]);
最后一种更简洁的写法是通过 List 接口定义的 T[] toArray(IntFunction<T[]> generator)
方法:
1
Integer[] array = list.toArray(Integer[]::new);
这种函数式写法我们会在后续讲到。
反过来,把Array变为List就简单多了,通过List.of(T…)方法最简单:
1
2Integer[] array = { 1, 2, 3 };
List<Integer> list = List.of(array);
对于 JDK 11 之前的版本,可以使用 Arrays.asList(T...)
方法把数组转换成 List。
要注意的是,返回的 List 不一定就是 ArrayList
或者 LinkedList
,因为 List 只是一个接口,如果我们调用 List.of()
,它返回的是一个只读 List
:
1
2
3
4
5
6public class Main {
public static void main(String[] args) {
List<Integer> list = List.of(12, 34, 56);
list.add(999); // UnsupportedOperationException
}
}
对只读 List 调用 add()
、remove()
方法会抛出 UnsupportedOperationException
。
小结
- List是按索引顺序访问的长度可变的有序表,优先使用ArrayList而不是LinkedList;
- 可以直接使用for each遍历List;
- List可以和Array相互转换。
编写equal方法
List 还提供了 boolean contains(Object o)
方法来判断 List 是否包含某个指定元素。此外,int indexOf(Object o)
方法可以返回某个元素的索引,如果元素不存在,就返回 -1
。
1
2
3
4
5
6
7
8
9public class Main {
public static void main(String[] args) {
List<String> list = List.of("A", "B", "C");
System.out.println(list.contains("C")); // true
System.out.println(list.contains("X")); // false
System.out.println(list.indexOf("C")); // 2
System.out.println(list.indexOf("X")); // -1
}
}
这里我们注意一个问题,我们往List中添加的"C"
和调用contains("C")
传入的"C"
是不是同一个实例?
如果这两个"C"
不是同一个实例,这段代码是否还能得到正确的结果?我们可以改写一下代码测试一下:
1
2
3
4
5
6
7
8import java.util.List;
public class Main {
public static void main(String[] args) {
List<String> list = List.of("A", "B", "C");
System.out.println(list.contains(new String("C"))); // true or false?
System.out.println(list.indexOf(new String("C"))); // 2 or -1?
}
}
因为我们传入的是new String("C")
,所以一定是不同的实例。结果仍然符合预期,这是为什么呢?
因为List内部并不是通过==
判断两个元素是否相等,而是使用equals()
方法判断两个元素是否相等,例如contains()
方法可以实现如下:
1
2
3
4
5
6
7
8
9
10
11public class ArrayList {
Object[] elementData;
public boolean contains(Object o) {
for (int i = 0; i < size; i++) {
if (o.equals(elementData[i])) {
return true;
}
}
return false;
}
}
因此,要正确使用List的contains()
、indexOf()
这些方法,放入的实例必须正确覆写equals()
方法,否则,放进去的实例,查找不到。我们之所以能正常放入String、Integer这些对象,是因为Java标准库定义的这些类已经正确实现了equals()
方法。
我们以Person对象为例,测试一下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18import java.util.List;
public class Main {
public static void main(String[] args) {
List<Person> list = List.of(
new Person("Xiao Ming"),
new Person("Xiao Hong"),
new Person("Bob")
);
System.out.println(list.contains(new Person("Bob"))); // false
}
}
class Person {
String name;
public Person(String name) {
this.name = name;
}
}
不出意外,虽然放入了new Person("Bob")
,但是用另一个new Person("Bob")
查询不到,原因就是Person
类没有覆写equals()
方法。
编写equals
JAVA当中所有的类都是继承于Object这个超类的,在Object类中定义了一个equals的方法,equals的源码是这样写的:
1
2
3
4
5public boolean equals(Object obj) {
//this - s1
//obj - s2
return (this == obj);
}
可以看到,这个方法的初始默认行为是比较对象的内存地址值,一般来说,意义不大。所以,在一些类库当中这个方法被重写了,如String、Integer、Date。在这些类当中equals有其自身的实现(一般都是用来比较对象的成员变量值是否相同),而不再是比较类在堆内存中的存放地址了。
如何正确编写equals()方法?equals()方法要求我们必须满足以下条件:
- 自反性(Reflexive):对于非 null 的 x 来说,
x.equals(x)
必须返回 true; - 对称性(Symmetric):对于非 null 的 x 和 y 来说,如果
x.equals(y)
为 true,则y.equals(x)
也必须为 true; - 传递性(Transitive):对于非 null 的 x、y 和 z 来说,如果
x.equals(y)
为 true,y.equals(z)
也为 true,那么x.equals(z)
也必须为 true; - 一致性(Consistent):对于非 null 的 x 和 y 来说,只要 x 和 y 状态不变,则
x.equals(y)
总是一致地返回 true 或者 false; - 对 null 的比较:即
x.equals(null)
永远返回 false。
上述规则看上去似乎非常复杂,但其实代码实现equals()方法是很简单的,我们以Person类为例:
1
2
3
4public class Person {
public String name;
public int age;
}
首先,我们要定义“相等”的逻辑含义。对于Person类,如果name相等,并且age相等,我们就认为两个Person实例相等。
因此,编写equals()
方法如下:
1
2
3
4
5
6
7public boolean equals(Object o) {
if (o instanceof Person) {
Person p = (Person) o;
return this.name.equals(p.name) && this.age == p.age;
}
return false;
}
对于引用字段比较,我们使用equals(),对于基本类型字段的比较,我们使用==
。
如果this.name为null,那么equals()方法会报错,因此,需要继续改写如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14public boolean equals(Object o) {
if (o instanceof Person) {
Person p = (Person) o;
boolean nameEquals = false;
if (this.name == null && p.name == null) {
nameEquals = true;
}
if (this.name != null) {
nameEquals = this.name.equals(p.name);
}
return nameEquals && this.age == p.age;
}
return false;
}
因此,我们总结一下equals()
方法的正确编写方法:
- 先确定实例“相等”的逻辑,即哪些字段相等,就认为实例相等;
- 用
instanceof
判断传入的待比较的Object
是不是当前类型,如果是,继续比较,否则,返回false; - 对引用类型用
Objects.equals()
比较,对基本类型直接用==
比较。
使用Objects.equals()
比较两个引用类型是否相等的目的是省去了判断null的麻烦。两个引用类型都是null时它们也是相等的。
如果不调用List的contains()
、indexOf()
这些方法,那么放入的元素就不需要实现equals()
方法。
小结
- 在List中查找元素时,List的实现类通过元素的equals()方法比较两个元素是否相等,因此,放入的元素必须正确覆写equals()方法,Java标准库提供的String、Integer等已经覆写了equals()方法;
- 编写equals()方法可借助Objects.equals()判断。
- 如果不在List中查找元素,就不必覆写equals()方法。
使用Map
我们知道,List是一种顺序列表,如果有一个存储学生Student实例的List,要在List中根据name查找某个指定的Student的分数,应该怎么办?
最简单的方法是遍历List并判断name是否相等,然后返回指定元素:
1
2
3
4
5
6
7
8
9List<Student> list = ...
Student target = null;
for (Student s : list) {
if ("Xiao Ming".equals(s.name)) {
target = s;
break;
}
}
System.out.println(target.score);
这种需求其实非常常见,即通过一个键去查询对应的值。使用List来实现存在效率非常低的问题,因为平均需要扫描一半的元素才能确定,而Map这种键值(key-value)映射表的数据结构,作用就是能高效通过key快速查找value(元素)。
用Map来实现根据name查询某个Student的代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24import java.util.HashMap;
import java.util.Map;
public class Main {
public static void main(String[] args) {
Student s = new Student("Xiao Ming", 99);
Map<String, Student> map = new HashMap<>();
map.put("Xiao Ming", s); // 将"Xiao Ming"和Student实例映射并关联
Student target = map.get("Xiao Ming"); // 通过key查找并返回映射的Student实例
System.out.println(target == s); // true,同一个实例
System.out.println(target.score); // 99
Student another = map.get("Bob"); // 通过另一个key查找
System.out.println(another); // 未找到返回null
}
}
class Student {
public String name;
public int score;
public Student(String name, int score) {
this.name = name;
this.score = score;
}
}
通过上述代码可知:Map<K, V>
是一种键-值映射表,当我们调用put(K key, V value)
方法时,就把key和value做了映射并放入Map。当我们调用V get(K key)
时,就可以通过key获取到对应的value。如果key不存在,则返回null
。和List类似,Map也是一个接口,最常用的实现类是HashMap
。
如果只是想查询某个key是否存在,可以调用boolean containsKey(K key)
方法。
如果我们在存储Map映射关系的时候,对同一个key调用两次put()
方法,分别放入不同的value,会有什么问题呢?例如:
1
2
3
4
5
6
7
8
9
10
11
12
13import java.util.HashMap;
import java.util.Map;
public class Main {
public static void main(String[] args) {
Map<String, Integer> map = new HashMap<>();
map.put("apple", 123);
map.put("pear", 456);
System.out.println(map.get("apple")); // 123
map.put("apple", 789); // 再次放入apple作为key,但value变为789
System.out.println(map.get("apple")); // 789
}
}
重复放入key-value
并不会有任何问题,但是一个key只能关联一个value。在上面的代码中,一开始我们把key对象”apple”映射到Integer对象123,然后再次调用put()
方法把”apple”映射到789,这时,原来关联的value对象123就被“冲掉”了。实际上,put()方法的签名是V put(K key, V value)
,如果放入的key已经存在,put()方法会返回被删除的旧的value,否则,返回null。
始终牢记:Map中不存在重复的key,因为放入相同的key,只会把原有的key-value对应的value给替换掉。
此外,在一个Map中,虽然key不能重复,但value是可以重复的:
1
2
3Map<String, Integer> map = new HashMap<>();
map.put("apple", 123);
map.put("pear", 123); // ok
遍历Map
对Map来说,要遍历key可以使用for each
循环遍历Map实例的keySet()
方法返回的Set集合,它包含不重复的key的集合:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15import java.util.HashMap;
import java.util.Map;
public class Main {
public static void main(String[] args) {
Map<String, Integer> map = new HashMap<>();
map.put("apple", 123);
map.put("pear", 456);
map.put("banana", 789);
for (String key : map.keySet()) {
Integer value = map.get(key);
System.out.println(key + " = " + value);
}
}
}
同时遍历key和value可以使用for each
循环遍历Map对象的entrySet()
集合,它包含每一个key-value映射:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16import java.util.HashMap;
import java.util.Map;
public class Main {
public static void main(String[] args) {
Map<String, Integer> map = new HashMap<>();
map.put("apple", 123);
map.put("pear", 456);
map.put("banana", 789);
for (Map.Entry<String, Integer> entry : map.entrySet()) {
String key = entry.getKey();
Integer value = entry.getValue();
System.out.println(key + " = " + value);
}
}
}
Map和List不同的是,Map存储的是key-value的映射关系,并且,它不保证顺序。在遍历的时候,遍历的顺序既不一定是put()时放入的key的顺序,也不一定是key的排序顺序。使用Map时,任何依赖顺序的逻辑都是不可靠的。以HashMap为例,假设我们放入”A”,”B”,”C”这3个key,遍历的时候,每个key会保证被遍历一次且仅遍历一次,但顺序完全没有保证,甚至对于不同的JDK版本,相同的代码遍历的输出顺序都是不同的!
遍历Map时,不可假设输出的key是有序的!
小结
- Map是一种映射表,可以通过key快速查找value。
- 可以通过for each遍历keySet(),也可以通过for each遍历entrySet(),直接获取key-value。
- 最常用的一种Map实现是HashMap。
编写equals和hashCode
Map是一种键-值(key-value)映射表,可以通过key快速查找对应的value。
以HashMap为例,观察下面的代码:
1
2
3
4
5
6
7Map<String, Person> map = new HashMap<>();
map.put("a", new Person("Xiao Ming"));
map.put("b", new Person("Xiao Hong"));
map.put("c", new Person("Xiao Jun"));
map.get("a"); // Person("Xiao Ming")
map.get("x"); // null
HashMap之所以能根据key直接拿到value,原因是它内部通过空间换时间的方法,用一个大数组存储所有value,并根据key直接计算出value应该存储在哪个索引:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 ┌───┐
0 │ │
├───┤
1 │ ●─┼───> Person("Xiao Ming")
├───┤
2 │ │
├───┤
3 │ │
├───┤
4 │ │
├───┤
5 │ ●─┼───> Person("Xiao Hong")
├───┤
6 │ ●─┼───> Person("Xiao Jun")
├───┤
7 │ │
└───┘
如果key的值为”a”,计算得到的索引总是1,因此返回value为Person(“Xiao Ming”),如果key的值为”b”,计算得到的索引总是5,因此返回value为Person(“Xiao Hong”),这样,就不必遍历整个数组,即可直接读取key对应的value。
当我们使用key存取value的时候,就会引出一个问题:
我们放入Map的key是字符串”a”,但是,当我们获取Map的value时,传入的变量不一定就是放入的那个key对象。
换句话讲,两个key应该是内容相同,但不一定是同一个对象。测试代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15import java.util.HashMap;
import java.util.Map;
public class Main {
public static void main(String[] args) {
String key1 = "a";
Map<String, Integer> map = new HashMap<>();
map.put(key1, 123);
String key2 = new String("a");
map.get(key2); // 123
System.out.println(key1 == key2); // false
System.out.println(key1.equals(key2)); // true
}
}
因为在Map的内部,对key做比较是通过equals()实现的,这一点和List查找元素需要正确覆写equals()是一样的,即正确使用Map必须保证:作为key的对象必须正确覆写equals()方法。
我们经常使用String作为key,因为String已经正确覆写了equals()方法。但如果我们放入的key是一个自己写的类,就必须保证正确覆写了equals()方法。
我们再思考一下HashMap为什么能通过key直接计算出value存储的索引。相同的key对象(使用equals()判断时返回true)必须要计算出相同的索引,否则,相同的key每次取出的value就不一定对。
通过key计算索引的方式就是调用key对象的hashCode()方法,它返回一个int整数。HashMap正是通过这个方法直接定位key对应的value的索引,继而直接返回value。
因此,正确使用Map必须保证:
- 作为key的对象必须正确覆写equals()方法,相等的两个key实例调用equals()必须返回true;
- 作为key的对象还必须正确覆写hashCode()方法,且hashCode()方法要严格遵循以下规范:
- 如果两个对象相等,则两个对象的hashCode()必须相等;
- 如果两个对象不相等,则两个对象的hashCode()尽量不要相等。
即对应两个实例a和b:
- 如果a和b相等,那么a.equals(b)一定为true,则a.hashCode()必须等于b.hashCode();
- 如果a和b不相等,那么a.equals(b)一定为false,则a.hashCode()和b.hashCode()尽量不要相等。
上述第一条规范是正确性,必须保证实现,否则HashMap不能正常工作。
而第二条如果尽量满足,则可以保证查询效率,因为不同的对象,如果返回相同的hashCode(),会造成Map内部存储冲突,使存取的效率下降。
正确编写equals()的方法我们已经在编写equals方法
一节中讲过了。
在正确实现equals()的基础上,我们还需要正确实现hashCode(),即上述3个字段分别相同的实例,hashCode()返回的int必须相同:
1
2
3
4
5
6
7
8
9
10
11
12
13
14public class Person {
String firstName;
String lastName;
int age;
int hashCode() {
int h = 0;
h = 31 * h + firstName.hashCode();
h = 31 * h + lastName.hashCode();
h = 31 * h + age;
return h;
}
}
注意到String类已经正确实现了hashCode()方法,我们在计算Person的hashCode()时,反复使用31*h,这样做的目的是为了尽量把不同的Person实例的hashCode()均匀分布到整个int范围。
和实现equals()方法遇到的问题类似,如果firstName或lastName为null,上述代码工作起来就会抛NullPointerException。为了解决这个问题,我们在计算hashCode()的时候,经常借助Objects.hash()来计算:
1
2
3int hashCode() {
return Objects.hash(firstName, lastName, age);
}
所以,编写equals()和hashCode()遵循的原则是:
equals()用到的用于比较的每一个字段,都必须在hashCode()中用于计算;equals()中没有使用到的字段,绝不可放在hashCode()中计算。
另外注意,对于放入HashMap的value对象,没有任何要求。
延伸阅读
既然HashMap内部使用了数组,通过计算key的hashCode()直接定位value所在的索引,那么第一个问题来了:hashCode()返回的int范围高达±21亿,先不考虑负数,HashMap内部使用的数组得有多大?
实际上HashMap初始化时默认的数组大小只有16,任何key,无论它的hashCode()有多大,都可以简单地通过:
1
int index = key.hashCode() & 0xf; // 0xf = 15
把索引确定在0~15,即永远不会超出数组范围,上述算法只是一种最简单的实现。
第二个问题:如果添加超过16个key-value到HashMap,数组不够用了怎么办?
添加超过一定数量的key-value时,HashMap会在内部自动扩容,每次扩容一倍,即长度为16的数组扩展为长度32,相应地,需要重新确定hashCode()计算的索引位置。例如,对长度为32的数组计算hashCode()对应的索引,计算方式要改为:
1
int index = key.hashCode() & 0x1f; // 0x1f = 31
由于扩容会导致重新分布已有的key-value,所以,频繁扩容对HashMap的性能影响很大。如果我们确定要使用一个容量为10000个key-value的HashMap,更好的方式是创建HashMap时就指定容量:
1
Map<String, Integer> map = new HashMap<>(10000);
虽然指定容量是10000,但HashMap内部的数组长度总是2n,因此,实际数组长度被初始化为比10000大的16384($2^{14}$)。
最后一个问题:如果不同的两个key,例如”a”和”b”,它们的hashCode()恰好是相同的(这种情况是完全可能的,因为不相等的两个实例,只要求hashCode()尽量不相等),那么,当我们放入:
1
2map.put("a", new Person("Xiao Ming"));
map.put("b", new Person("Xiao Hong"));
时,由于计算出的数组索引相同,后面放入的”Xiao Hong”会不会把”Xiao Ming”覆盖了?
当然不会!使用Map的时候,只要key不相同,它们映射的value就互不干扰。但是,在HashMap内部,确实可能存在不同的key,映射到相同的hashCode(),即相同的数组索引上,肿么办?
我们就假设”a”和”b”这两个key最终计算出的索引都是5,那么,在HashMap的数组中,实际存储的不是一个Person实例,而是一个List,它包含两个Entry,一个是”a”的映射,一个是”b”的映射:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 ┌───┐
0 │ │
├───┤
1 │ │
├───┤
2 │ │
├───┤
3 │ │
├───┤
4 │ │
├───┤
5 │ ●─┼───> List<Entry<String, Person>>
├───┤
6 │ │
├───┤
7 │ │
└───┘
在查找的时候,例如:
1
Person p = map.get("a");
HashMap内部通过”a”找到的实际上是List<Entry<String, Person>>
,它还需要遍历这个List,并找到一个Entry,它的key字段是”a”,才能返回对应的Person实例。
我们把不同的key具有相同的hashCode()的情况称之为哈希冲突。在冲突的时候,一种最简单的解决办法是用List存储hashCode()相同的key-value。显然,如果冲突的概率越大,这个List就越长,Map的get()方法效率就越低,这就是为什么要尽量满足条件二:
如果两个对象不相等,则两个对象的hashCode()尽量不要相等。
hashCode()方法编写得越好,HashMap工作的效率就越高。
小结
- 要正确使用HashMap,作为key的类必须正确覆写equals()和hashCode()方法;
- 一个类如果覆写了equals(),就必须覆写hashCode(),并且覆写规则是:
- 如果equals()返回true,则hashCode()返回值必须相等;
- 如果equals()返回false,则hashCode()返回值尽量不要相等。
- 实现hashCode()方法可以通过Objects.hashCode()辅助方法实现。
使用EnumMap
因为HashMap是一种通过对key计算hashCode(),通过空间换时间的方式,直接定位到value所在的内部数组的索引,因此,查找效率非常高。
如果作为key的对象是enum类型,那么,还可以使用Java集合库提供的一种EnumMap,它在内部以一个非常紧凑的数组存储value,并且根据enum类型的key直接定位到内部数组的索引,并不需要计算hashCode(),不但效率最高,而且没有额外的空间浪费。
我们以DayOfWeek这个枚举类型为例,为它做一个“翻译”功能:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17import java.time.DayOfWeek;
import java.util.*;
public class Main {
public static void main(String[] args) {
Map<DayOfWeek, String> map = new EnumMap<>(DayOfWeek.class);
map.put(DayOfWeek.MONDAY, "星期一");
map.put(DayOfWeek.TUESDAY, "星期二");
map.put(DayOfWeek.WEDNESDAY, "星期三");
map.put(DayOfWeek.THURSDAY, "星期四");
map.put(DayOfWeek.FRIDAY, "星期五");
map.put(DayOfWeek.SATURDAY, "星期六");
map.put(DayOfWeek.SUNDAY, "星期日");
System.out.println(map);
System.out.println(map.get(DayOfWeek.MONDAY));
}
}
使用EnumMap的时候,我们总是用Map接口来引用它,因此,实际上把HashMap和EnumMap互换,在客户端看来没有任何区别。
小结
- 如果Map的key是enum类型,推荐使用EnumMap,既保证速度,也不浪费空间。
- 使用EnumMap的时候,根据面向抽象编程的原则,应持有Map接口。
使用TreeMap
我们已经知道,HashMap是一种以空间换时间的映射表,它的实现原理决定了内部的Key是无序的,即遍历HashMap的Key时,其顺序是不可预测的(但每个Key都会遍历一次且仅遍历一次)。
还有一种Map,它在内部会对Key进行排序,这种Map就是SortedMap。注意到SortedMap是接口,它的实现类是TreeMap。
1
2
3
4
5
6
7
8
9
10
11
12
13
14 ┌───┐
│Map│
└───┘
▲
┌────┴─────┐
│ │
┌───────┐ ┌─────────┐
│HashMap│ │SortedMap│
└───────┘ └─────────┘
▲
│
┌─────────┐
│ TreeMap │
└─────────┘
SortedMap保证遍历时以Key的顺序来进行排序。例如,放入的Key是”apple”、”pear”、”orange”,遍历的顺序一定是”apple”、”orange”、”pear”,因为String默认按字母排序:
1
2
3
4
5
6
7
8
9
10
11
12
13
14import java.util.*;
public class Main {
public static void main(String[] args) {
Map<String, Integer> map = new TreeMap<>();
map.put("orange", 1);
map.put("apple", 2);
map.put("pear", 3);
for (String key : map.keySet()) {
System.out.println(key);
}
// apple, orange, pear
}
}
使用TreeMap时,放入的Key必须实现Comparable
接口。String、Integer这些类已经实现了Comparable接口,因此可以直接作为Key使用。作为Value的对象则没有任何要求。
如果作为Key的class没有实现Comparable接口,那么,必须在创建TreeMap时同时指定一个自定义排序算法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28import java.util.*;
public class Main {
public static void main(String[] args) {
Map<Person, Integer> map = new TreeMap<>(new Comparator<Person>() {
public int compare(Person p1, Person p2) {
return p1.name.compareTo(p2.name);
}
});
map.put(new Person("Tom"), 1);
map.put(new Person("Bob"), 2);
map.put(new Person("Lily"), 3);
for (Person key : map.keySet()) {
System.out.println(key);
}
// {Person: Bob}, {Person: Lily}, {Person: Tom}
System.out.println(map.get(new Person("Bob"))); // 2
}
}
class Person {
public String name;
Person(String name) {
this.name = name;
}
public String toString() {
return "{Person: " + name + "}";
}
}
注意到Comparator接口要求实现一个比较方法,它负责比较传入的两个元素a和b,如果a<b
,则返回负数,通常是-1,如果a==b,则返回0,如果a>b
,则返回正数,通常是1。TreeMap内部根据比较结果对Key进行排序。
从上述代码执行结果可知,打印的Key确实是按照Comparator定义的顺序排序的。如果要根据Key查找Value,我们可以传入一个new Person(“Bob”)作为Key,它会返回对应的Integer值2。
另外,注意到Person类并未覆写equals()和hashCode(),**因为TreeMap不使用equals()和hashCode()**。
我们来看一个稍微复杂的例子:这次我们定义了Student类,并用分数score进行排序,高分在前:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29import java.util.*;
public class Main {
public static void main(String[] args) {
Map<Student, Integer> map = new TreeMap<>(new Comparator<Student>() {
public int compare(Student p1, Student p2) {
return p1.score > p2.score ? -1 : 1;
}
});
map.put(new Student("Tom", 77), 1);
map.put(new Student("Bob", 66), 2);
map.put(new Student("Lily", 99), 3);
for (Student key : map.keySet()) {
System.out.println(key);
}
System.out.println(map.get(new Student("Bob", 66))); // null?
}
}
class Student {
public String name;
public int score;
Student(String name, int score) {
this.name = name;
this.score = score;
}
public String toString() {
return String.format("{%s: score=%d}", name, score);
}
}
在for循环中,我们确实得到了正确的顺序。但是,且慢!根据相同的Key:new Student("Bob", 66)
进行查找时,结果为null!
这是怎么肥四?难道TreeMap有问题?遇到TreeMap工作不正常时,我们首先回顾Java编程基本规则:出现问题,不要怀疑Java标准库,要从自身代码找原因。
在这个例子中,TreeMap出现问题,原因其实出在这个Comparator上:
1
2
3public int compare(Student p1, Student p2) {
return p1.score > p2.score ? -1 : 1;
}
在p1.score
和p2.score
不相等的时候,它的返回值是正确的,但是,在p1.score
和p2.score
相等的时候,它并没有返回0!这就是为什么TreeMap工作不正常的原因:TreeMap在比较两个Key是否相等时,依赖Key的compareTo()方法或者Comparator.compare()方法。在两个Key相等时,必须返回0。因此,修改代码如下:
1
2
3
4
5
6public int compare(Student p1, Student p2) {
if (p1.score == p2.score) {
return 0;
}
return p1.score > p2.score ? -1 : 1;
}
或者直接借助Integer.compare(int, int)也可以返回正确的比较结果。
小结
- SortedMap在遍历时严格按照Key的顺序遍历,最常用的实现类是TreeMap;
- 作为SortedMap的Key必须实现Comparable接口,或者传入Comparator;
- 要严格按照compare()规范实现比较逻辑,否则,TreeMap将不能正常工作。
使用Properties
在编写应用程序的时候,经常需要读写配置文件。例如,用户的设置:
1
2
3
4# 上次最后打开的文件:
last_open_file=/data/hello.txt
# 自动保存文件的时间间隔:
auto_save_interval=60
配置文件的特点是,它的Key-Value一般都是String-String类型的,因此我们完全可以用Map<String, String>
来表示它。
因为配置文件非常常用,所以Java集合库提供了一个Properties来表示一组“配置”。由于历史遗留原因,Properties内部本质上是一个Hashtable,但我们只需要用到Properties自身关于读写配置的接口。
读取配置文件
用Properties读取配置文件非常简单。Java默认配置文件以.properties
为扩展名,每行以key=value表示,以#课开头的是注释。以下是一个典型的配置文件:
1
2
3
4# setting.properties
last_open_file=/data/hello.txt
auto_save_interval=60
可以从文件系统读取这个.properties
文件:
1
2
3
4
5
6String f = "setting.properties";
Properties props = new Properties();
props.load(new java.io.FileInputStream(f));
String filepath = props.getProperty("last_open_file");
String interval = props.getProperty("auto_save_interval", "120");
可见,用Properties读取配置文件,一共有三步:
- 创建Properties实例;
- 调用load()读取文件;
- 调用getProperty()获取配置。
调用getProperty()获取配置时,如果key不存在,将返回null。我们还可以提供一个默认值,这样,当key不存在的时候,就返回默认值。
也可以从classpath读取.properties
文件,因为load(InputStream)方法接收一个InputStream实例,表示一个字节流,它不一定是文件流,也可以是从jar包中读取的资源流:
1
2Properties props = new Properties();
props.load(getClass().getResourceAsStream("/common/setting.properties"));
试试从内存读取一个字节流:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16import java.io.*;
import java.util.Properties;
public class Main {
public static void main(String[] args) throws IOException {
String settings = "# test" + "\n" + "course=Java" + "\n" + "last_open_date=2019-08-07T12:35:01";
ByteArrayInputStream input = new ByteArrayInputStream(settings.getBytes("UTF-8"));
Properties props = new Properties();
props.load(input);
System.out.println("course: " + props.getProperty("course"));
System.out.println("last_open_date: " + props.getProperty("last_open_date"));
System.out.println("last_open_file: " + props.getProperty("last_open_file"));
System.out.println("auto_save: " + props.getProperty("auto_save", "60"));
}
}
如果有多个.properties文件,可以反复调用load()读取,后读取的key-value会覆盖已读取的key-value:
1
2
3Properties props = new Properties();
props.load(getClass().getResourceAsStream("/common/setting.properties"));
props.load(new FileInputStream("C:\\conf\\setting.properties"));
上面的代码演示了Properties的一个常用用法:可以把默认配置文件放到classpath中,然后,根据机器的环境编写另一个配置文件,覆盖某些默认的配置。
Properties设计的目的是存储String类型的key-value,但Properties实际上是从Hashtable派生的,它的设计实际上是有问题的,但是为了保持兼容性,现在已经没法修改了。除了getProperty()和setProperty()方法外,还有从Hashtable继承下来的get()和put()方法,这些方法的参数签名是Object,我们在使用Properties的时候,不要去调用这些从Hashtable继承下来的方法。
写入配置文件
如果通过setProperty()修改了Properties实例,可以把配置写入文件,以便下次启动时获得最新配置。写入配置文件使用store()方法:
1
2
3
4Properties props = new Properties();
props.setProperty("url", "http://www.liaoxuefeng.com");
props.setProperty("language", "Java");
props.store(new FileOutputStream("C:\\conf\\setting.properties"), "这是写入的properties注释");
编码
早期版本的Java规定.properties文件编码是ASCII编码(ISO8859-1),如果涉及到中文就必须用name=\u4e2d\u6587
来表示,非常别扭。从JDK9开始,Java的.properties
文件可以使用UTF-8编码了。
不过,需要注意的是,由于load(InputStream)默认总是以ASCII编码读取字节流,所以会导致读到乱码。我们需要用另一个重载方法load(Reader)读取:
1
2Properties props = new Properties();
props.load(new FileReader("settings.properties", StandardCharsets.UTF_8));
就可以正常读取中文。InputStream和Reader的区别是一个是字节流,一个是字符流。字符流在内存中已经以char类型表示了,不涉及编码问题。
小结
- Java集合库提供的Properties用于读写配置文件.properties。.properties文件可以使用UTF-8编码。
- 可以从文件系统、classpath或其他任何地方读取.properties文件。
- 读写Properties时,注意仅使用getProperty()和setProperty()方法,不要调用继承而来的get()和put()等方法。
使用Set
我们知道,Map用于存储key-value的映射,对于充当key的对象,是不能重复的,并且,不但需要正确覆写equals()方法,还要正确覆写hashCode()方法。
如果我们只需要存储不重复的key,并不需要存储映射的value,那么就可以使用Set。
Set用于存储不重复的元素集合,它主要提供以下几个方法:
- 将元素添加进
Set<E>
:boolean add(E e)
- 将元素从
Set<E>
删除:boolean remove(Object e)
- 判断是否包含元素:
boolean contains(Object e)
我们来看几个简单的例子:
1
2
3
4
5
6
7
8
9
10
11
12
13import java.util.*;
public class Main {
public static void main(String[] args) {
Set<String> set = new HashSet<>();
System.out.println(set.add("abc")); // true
System.out.println(set.add("xyz")); // true
System.out.println(set.add("xyz")); // false,添加失败,因为元素已存在
System.out.println(set.contains("xyz")); // true,元素存在
System.out.println(set.contains("XYZ")); // false,元素不存在
System.out.println(set.remove("hello")); // false,删除失败,因为元素不存在
System.out.println(set.size()); // 2,一共两个元素
}
}
Set实际上相当于只存储key、不存储value的Map。我们经常用Set用于去除重复元素。
因为放入Set的元素和Map的key类似,都要正确实现equals()和hashCode()方法,否则该元素无法正确地放入Set。
最常用的Set实现类是HashSet,实际上,HashSet仅仅是对HashMap的一个简单封装,它的核心代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19public class HashSet<E> implements Set<E> {
// 持有一个HashMap:
private HashMap<E, Object> map = new HashMap<>();
// 放入HashMap的value:
private static final Object PRESENT = new Object();
public boolean add(E e) {
return map.put(e, PRESENT) == null;
}
public boolean contains(Object o) {
return map.containsKey(o);
}
public boolean remove(Object o) {
return map.remove(o) == PRESENT;
}
}
Set接口并不保证有序,而SortedSet接口则保证元素是有序的:
- HashSet是无序的,因为它实现了Set接口,并没有实现SortedSet接口;
- TreeSet是有序的,因为它实现了SortedSet接口。
用一张图表示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14 ┌───┐
│Set│
└───┘
▲
┌────┴─────┐
│ │
┌───────┐ ┌─────────┐
│HashSet│ │SortedSet│
└───────┘ └─────────┘
▲
│
┌─────────┐
│ TreeSet │
└─────────┘
我们来看HashSet的输出:
1
2
3
4
5
6
7
8
9
10
11
12
13import java.util.*;
public class Main {
public static void main(String[] args) {
Set<String> set = new HashSet<>();
set.add("apple");
set.add("banana");
set.add("pear");
set.add("orange");
for (String s : set) {
System.out.println(s);
}
}
}
注意输出的顺序既不是添加的顺序,也不是String排序的顺序,在不同版本的JDK中,这个顺序也可能是不同的。
把HashSet换成TreeSet,在遍历TreeSet时,输出就是有序的,这个顺序是元素的排序顺序:
1
2
3
4
5
6
7
8
9
10
11
12
13import java.util.*;
public class Main {
public static void main(String[] args) {
Set<String> set = new TreeSet<>();
set.add("apple");
set.add("banana");
set.add("pear");
set.add("orange");
for (String s : set) {
System.out.println(s);
}
}
}
使用TreeSet和使用TreeMap的要求一样,添加的元素必须正确实现Comparable接口,如果没有实现Comparable接口,那么创建TreeSet时必须传入一个Comparator对象。
小结
- Set用于存储不重复的元素集合:
- 放入HashSet的元素与作为HashMap的key要求相同;
- 放入TreeSet的元素与作为TreeMap的Key要求相同;
- 利用Set可以去除重复元素;
- 遍历SortedSet按照元素的排序顺序遍历,也可以自定义排序算法。
使用Queue
队列(Queue)是一种经常使用的集合。Queue实际上是实现了一个先进先出(FIFO:First In First Out)的有序表。它和List的区别在于,List可以在任意位置添加和删除元素,而Queue只有两个操作:
- 把元素添加到队列末尾;
- 从队列头部取出元素。
例如:超市的收银台就是一个队列
在Java的标准库中,队列接口Queue定义了以下几个方法:
- int size():获取队列长度;
- boolean add(E)/boolean offer(E):添加元素到队尾;
- E remove()/E poll():获取队首元素并从队列中删除;
- E element()/E peek():获取队首元素但并不从队列中删除。
对于具体的实现类,有的Queue有最大队列长度限制,有的Queue没有。注意到添加、删除和获取队列元素总是有两个方法,这是因为在添加或获取元素失败时,这两个方法的行为是不同的。我们用一个表格总结如下:
throw Exception | 返回false或null | |||
---|---|---|---|---|
添加元素到队尾 | add(E e) | boolean offer(E e) | ||
取队首元素并删除 | E remove() | E poll() | ||
取队首元素但不删除 | E element() | E peek() | ||
举个栗子,假设我们有一个队列,对它做一个添加操作,如果调用add()方法,当添加失败时(可能超过了队列的容量),它会抛出异常: | ||||
|
||||
如果我们调用offer()方法来添加元素,当添加失败时,它不会抛异常,而是返回false: | ||||
|
||||
当我们需要从Queue中取出队首元素时,如果当前Queue是一个空队列,调用remove()方法,它会抛出异常: | ||||
|
||||
如果我们调用poll()方法来取出队首元素,当获取失败时,它不会抛异常,而是返回null: | ||||
|
||||
因此,两套方法可以根据需要来选择使用。 | ||||
注意:不要把null添加到队列中,否则poll()方法返回null时,很难确定是取到了null元素还是队列为空。 | ||||
接下来我们以poll()和peek()为例来说说“获取并删除”与“获取但不删除”的区别。对于Queue来说,每次调用poll(),都会获取队首元素,并且获取到的元素已经从队列中被删除了: | ||||
|
||||
如果用peek(),因为获取队首元素时,并不会从队列中删除这个元素,所以可以反复获取: | ||||
|
||||
从上面的代码中,我们还可以发现,LinkedList即实现了List接口,又实现了Queue接口,但是,在使用的时候,如果我们把它当作List,就获取List的引用,如果我们把它当作Queue,就获取Queue的引用: | ||||
|
||||
始终按照面向抽象编程的原则编写代码,可以大大提高代码的质量。 |
小结
- 队列Queue实现了一个先进先出(FIFO)的数据结构:
- 通过add()/offer()方法将元素添加到队尾;
- 通过remove()/poll()从队首获取元素并删除;
- 通过element()/peek()从队首获取元素但不删除。
- 要避免把null添加到队列。
使用PriorityQueue
我们知道,Queue是一个先进先出(FIFO)的队列。
在银行柜台办业务时,我们假设只有一个柜台在办理业务,但是办理业务的人很多,怎么办?
可以每个人先取一个号,例如:A1、A2、A3……然后,按照号码顺序依次办理,实际上这就是一个Queue。
如果这时来了一个VIP客户,他的号码是V1,虽然当前排队的是A10、A11、A12……但是柜台下一个呼叫的客户号码却是V1。
这个时候,我们发现,要实现“VIP插队”的业务,用Queue就不行了,因为Queue会严格按FIFO的原则取出队首元素。我们需要的是优先队列:PriorityQueue。
PriorityQueue和Queue的区别在于,它的出队顺序与元素的优先级有关,对PriorityQueue调用remove()或poll()方法,返回的总是优先级最高的元素。
要使用PriorityQueue,我们就必须给每个元素定义“优先级”。我们以实际代码为例,先看看PriorityQueue的行为:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16import java.util.PriorityQueue;
import java.util.Queue;
public class Main {
public static void main(String[] args) {
Queue<String> q = new PriorityQueue<>();
// 添加3个元素到队列:
q.offer("apple");
q.offer("pear");
q.offer("banana");
System.out.println(q.poll()); // apple
System.out.println(q.poll()); // banana
System.out.println(q.poll()); // pear
System.out.println(q.poll()); // null,因为队列为空
}
}
我们放入的顺序是”apple”、”pear”、”banana”,但是取出的顺序却是”apple”、”banana”、”pear”,这是因为从字符串的排序看,”apple”排在最前面,”pear”排在最后面。
因此,放入PriorityQueue的元素,必须实现Comparable接口,PriorityQueue会根据元素的排序顺序决定出队的优先级。
如果我们要放入的元素并没有实现Comparable接口怎么办?PriorityQueue允许我们提供一个Comparator对象来判断两个元素的顺序。我们以银行排队业务为例,实现一个PriorityQueue:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28public class Main {
public static void main(String[] args) {
Queue<User> q = new PriorityQueue<>(new UserComparator());
// 添加3个元素到队列:
q.offer(new User("Bob", "A1"));
q.offer(new User("Alice", "A2"));
q.offer(new User("Boss", "V1"));
System.out.println(q.poll()); // Boss/V1
System.out.println(q.poll()); // Bob/A1
System.out.println(q.poll()); // Alice/A2
System.out.println(q.poll()); // null,因为队列为空
}
}
class UserComparator implements Comparator<User> {
public int compare(User u1, User u2) {
if (u1.number.charAt(0) == u2.number.charAt(0)) {
// 如果两人的号都是A开头或者都是V开头,比较号的大小:
return u1.number.compareTo(u2.number);
}
if (u1.number.charAt(0) == 'V') {
// u1的号码是V开头,优先级高:
return -1;
} else {
return 1;
}
}
}
实现PriorityQueue的关键在于提供的UserComparator对象,它负责比较两个元素的大小(较小的在前)。UserComparator总是把V开头的号码优先返回,只有在开头相同的时候,才比较号码大小。
上面的UserComparator的比较逻辑其实还是有问题的,它会把A10排在A2的前面,请尝试修复该错误。
小结
- PriorityQueue实现了一个优先队列:从队首获取元素时,总是获取优先级最高的元素。
- PriorityQueue默认按元素比较的顺序排序(必须实现Comparable接口),也可以通过Comparator自定义排序算法(元素就不必实现Comparable接口)。
使用Deque
我们知道,Queue是队列,只能一头进,另一头出。
如果把条件放松一下,允许两头都进,两头都出,这种队列叫双端队列(Double Ended Queue),学名Deque。
Java集合提供了接口Deque来实现一个双端队列,它的功能是:
- 既可以添加到队尾,也可以添加到队首;
- 既可以从队首获取,又可以从队尾获取。
我们来比较一下Queue和Deque出队和入队的方法:
Queue | Deque | |
---|---|---|
添加元素到队尾 | add(E e) / offer(E e) | addLast(E e) / offerLast(E e) |
取队首元素并删除 | E remove() / E poll() | E removeFirst() / E pollFirst() |
取队首元素但不删除 | E element() / E peek() | E getFirst() / E peekFirst() |
添加元素到队首 | 无 | addFirst(E e) / offerFirst(E e) |
取队尾元素并删除 | 无 | E removeLast() / E pollLast() |
取队尾元素但不删除 | 无 | E getLast() / E peekLast() |
对于添加元素到队尾的操作,Queue提供了add()/offer()方法,而Deque提供了addLast()/offerLast()方法。添加元素到对首、取队尾元素的操作在Queue中不存在,在Deque中由addFirst()/removeLast()等方法提供。
注意到Deque接口实际上扩展自Queue:
1
2
3public interface Deque<E> extends Queue<E> {
...
}
因此,Queue提供的add()/offer()方法在Deque中也可以使用,但是,使用Deque,最好不要调用offer(),而是调用offerLast():
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15import java.util.Deque;
import java.util.LinkedList;
public class Main {
public static void main(String[] args) {
Deque<String> deque = new LinkedList<>();
deque.offerLast("A"); // A
deque.offerLast("B"); // A <- B
deque.offerFirst("C"); // C <- A <- B
System.out.println(deque.pollFirst()); // C, 剩下A <- B
System.out.println(deque.pollLast()); // B, 剩下A
System.out.println(deque.pollFirst()); // A
System.out.println(deque.pollFirst()); // null
}
}
如果直接写deque.offer(),我们就需要思考,offer()实际上是offerLast(),我们明确地写上offerLast(),不需要思考就能一眼看出这是添加到队尾。
因此,使用Deque,推荐总是明确调用offerLast()/offerFirst()或者pollFirst()/pollLast()方法。
Deque是一个接口,它的实现类有ArrayDeque和LinkedList。
我们发现LinkedList真是一个全能选手,它即是List,又是Queue,还是Deque。但是我们在使用的时候,总是用特定的接口来引用它,这是因为持有接口说明代码的抽象层次更高,而且接口本身定义的方法代表了特定的用途。
1
2
3
4
5
6// 不推荐的写法:
LinkedList<String> d1 = new LinkedList<>();
d1.offerLast("z");
// 推荐的写法:
Deque<String> d2 = new LinkedList<>();
d2.offerLast("z");
可见面向抽象编程的一个原则就是:尽量持有接口,而不是具体的实现类。
小结
Deque实现了一个双端队列(Double Ended Queue),它可以:
- 将元素添加到队尾或队首:addLast()/offerLast()/addFirst()/offerFirst();
- 从队首/队尾获取元素并删除:removeFirst()/pollFirst()/removeLast()/pollLast();
- 从队首/队尾获取元素但不删除:getFirst()/peekFirst()/getLast()/peekLast();
- 总是调用xxxFirst()/xxxLast()以便与Queue的方法区分开;
- 避免把null添加到队列。
使用Stack
栈(Stack)是一种后进先出(LIFO:Last In First Out)的数据结构。
什么是LIFO呢?我们先回顾一下Queue的特点FIFO:
1
2
3
4
5 ────────────────────────
(\(\ (\(\ (\(\ (\(\ (\(\
(='.') ─> (='.') (='.') (='.') ─> (='.')
O(_")") O(_")") O(_")") O(_")") O(_")")
────────────────────────
所谓FIFO,是最先进队列的元素一定最早出队列,而LIFO是最后进Stack的元素一定最早出Stack。如何做到这一点呢?只需要把队列的一端封死:
1
2
3
4
5 ───────────────────────────────┐
(\(\ (\(\ (\(\ (\(\ (\(\ │
(='.') <─> (='.') (='.') (='.') (='.')│
O(_")") O(_")") O(_")") O(_")") O(_")")│
───────────────────────────────┘
因此,Stack是这样一种数据结构:只能不断地往Stack中压入(push)元素,最后进去的必须最早弹出(pop)来:
Stack只有入栈和出栈的操作:
- 把元素压栈:push(E);
- 把栈顶的元素“弹出”:pop(E);
- 取栈顶元素但不弹出:peek(E)。
在Java中,我们用Deque可以实现Stack的功能:
- 把元素压栈:push(E)/addFirst(E);
- 把栈顶的元素“弹出”:pop(E)/removeFirst();
- 取栈顶元素但不弹出:peek(E)/peekFirst()。
为什么Java的集合类没有单独的Stack接口呢?因为有个遗留类名字就叫Stack,出于兼容性考虑,所以没办法创建Stack接口,只能用Deque接口来“模拟”一个Stack了。
当我们把Deque作为Stack使用时,注意只调用push()/pop()/peek()方法,不要调用addFirst()/removeFirst()/peekFirst()方法,这样代码更加清晰。
Stack的作用
Stack在计算机中使用非常广泛,JVM在处理Java方法调用的时候就会通过栈这种数据结构维护方法调用的层次。例如:
1
2
3
4
5
6
7
8
9
10
11static void main(String[] args) {
foo(123);
}
static String foo(x) {
return "F-" + bar(x + 1);
}
static int bar(int x) {
return x << 2;
}
JVM会创建方法调用栈,每调用一个方法时,先将参数压栈,然后执行对应的方法;当方法返回时,返回值压栈,调用方法通过出栈操作获得方法返回值。
因为方法调用栈有容量限制,嵌套调用过多会造成栈溢出,即引发StackOverflowError:
1
2
3
4
5
6
7
8
9public class Main {
public static void main(String[] args) {
increase(1);
}
static int increase(int x) {
return increase(x) + 1;
}
}
我们再来看一个Stack的用途:对整数进行进制的转换就可以利用栈。
例如,我们要把一个int整数12500转换为十六进制表示的字符串。
计算中缀表达式
小结
- 栈(Stack)是一种后进先出(LIFO)的数据结构,操作栈的元素的方法有:
- 把元素压栈:push(E);
- 把栈顶的元素“弹出”:pop(E);
- 取栈顶元素但不弹出:peek(E)。
- 在Java中,我们用Deque可以实现Stack的功能,注意只调用push()/pop()/peek()方法,避免调用Deque的其他方法。
- 最后,不要使用遗留类Stack。
使用Iterator
Java的集合类都可以使用for each
循环,List、Set和Queue会迭代每个元素,Map会迭代每个key。以List为例:
1
2
3
4List<String> list = List.of("Apple", "Orange", "Pear");
for (String s : list) {
System.out.println(s);
}
实际上,Java编译器并不知道如何遍历List。上述代码能够编译通过,只是因为编译器把for each循环通过Iterator改写为了普通的for循环:
1
2
3
4for (Iterator<String> it = list.iterator(); it.hasNext(); ) {
String s = it.next();
System.out.println(s);
}
我们把这种通过Iterator对象遍历集合的模式称为迭代器。
使用迭代器的好处在于,调用方总是以统一的方式遍历各种集合类型,而不必关系它们内部的存储结构。
例如,我们虽然知道ArrayList在内部是以数组形式存储元素,并且,它还提供了get(int)方法。虽然我们可以用for循环遍历:
1
2
3for (int i=0; i<list.size(); i++) {
Object value = list.get(i);
}
但是这样一来,调用方就必须知道集合的内部存储结构。并且,如果把ArrayList换成LinkedList,get(int)方法耗时会随着index的增加而增加。如果把ArrayList换成Set,上述代码就无法编译,因为Set内部没有索引。
用Iterator遍历就没有上述问题,因为Iterator对象是集合对象自己在内部创建的,它自己知道如何高效遍历内部的数据集合,调用方则获得了统一的代码,编译器才能把标准的for each循环自动转换为Iterator遍历。
如果我们自己编写了一个集合类,想要使用for each循环,只需满足以下条件:
- 集合类实现Iterable接口,该接口要求返回一个Iterator对象;
- 用Iterator对象迭代集合内部数据。
这里的关键在于,集合类通过调用iterator()方法,返回一个Iterator对象,这个对象必须自己知道如何遍历该集合。
一个简单的Iterator示例如下,它总是以倒序遍历集合:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47import java.util.*;
public class Main {
public static void main(String[] args) {
ReverseList<String> rlist = new ReverseList<>();
rlist.add("Apple");
rlist.add("Orange");
rlist.add("Pear");
for (String s : rlist) {
System.out.println(s);
}
}
}
class ReverseList<T> implements Iterable<T> {
private List<T> list = new ArrayList<>();
public void add(T t) {
list.add(t);
}
public Iterator<T> iterator() {
return new ReverseIterator(list.size());
}
class ReverseIterator implements Iterator<T> {
int index;
ReverseIterator(int index) {
this.index = index;
}
public boolean hasNext() {
return index > 0;
}
public T next() {
index--;
return ReverseList.this.list.get(index);
}
}
}
虽然ReverseList和ReverseIterator的实现类稍微比较复杂,但是,注意到这是底层集合库,只需编写一次。而调用方则完全按for each循环编写代码,根本不需要知道集合内部的存储逻辑和遍历逻辑。
在编写Iterator的时候,我们通常可以用一个内部类来实现Iterator接口,这个内部类可以直接访问对应的外部类的所有字段和方法。例如,上述代码中,内部类ReverseIterator可以用ReverseList.this获得当前外部类的this引用,然后,通过这个this引用就可以访问ReverseList的所有字段和方法。
小结
- Iterator是一种抽象的数据访问模型。使用Iterator模式进行迭代的好处有:
- 对任何集合都采用同一种访问模型;
- 调用者对集合内部结构一无所知;
- 集合类返回的Iterator对象知道如何迭代。
- Java提供了标准的迭代器模型,即集合类实现java.util.Iterable接口,返回java.util.Iterator实例。
使用Collections
Collections是JDK提供的工具类,同样位于java.util包中。它提供了一系列静态方法,能更方便地操作各种集合。
注意Collections结尾多了一个s,不是Collection!
我们一般看方法名和参数就可以确认Collections提供的该方法的功能。例如,对于以下静态方法:
1 public static boolean addAll(Collection<? super T> c, T... elements) { ... }
addAll()方法可以给一个Collection类型的集合添加若干元素。因为方法签名是Collection,所以我们可以传入List,Set等各种集合类型。
创建空集合
Collections提供了一系列方法来创建空集合:
- 创建空List:
List<T> emptyList()
- 创建空Map:
Map<K, V> emptyMap()
- 创建空Set:
Set<T> emptySet()
要注意到返回的空集合是不可变集合,无法向其中添加或删除元素。
此外,也可以用各个集合接口提供的of(T…)方法创建空集合。例如,以下创建空List的两个方法是等价的:
1
2List<String> list1 = List.of();
List<String> list2 = Collections.emptyList();
创建单元素集合
Collections提供了一系列方法来创建一个单元素集合:
- 创建一个元素的List:
List<T> singletonList(T o)
- 创建一个元素的Map:
Map<K, V> singletonMap(K key, V value)
- 创建一个元素的Set:
Set<T> singleton(T o)
要注意到返回的单元素集合也是不可变集合,无法向其中添加或删除元素。
此外,也可以用各个集合接口提供的of(T…)方法创建单元素集合。例如,以下创建单元素List的两个方法是等价的:
1
2List<String> list1 = List.of("apple");
List<String> list2 = Collections.singletonList("apple");
实际上,使用List.of(T...)
更方便,因为它既可以创建空集合,也可以创建单元素集合,还可以创建任意个元素的集合:
1
2
3
4List<String> list1 = List.of(); // empty list
List<String> list2 = List.of("apple"); // 1 element
List<String> list3 = List.of("apple", "pear"); // 2 elements
List<String> list4 = List.of("apple", "pear", "orange"); // 3 elements
排序
Collections可以对List进行排序。因为排序会直接修改List元素的位置,因此必须传入可变List:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15import java.util.*;
public class Main {
public static void main(String[] args) {
List<String> list = new ArrayList<>();
list.add("apple");
list.add("pear");
list.add("orange");
// 排序前:
System.out.println(list);
Collections.sort(list);
// 排序后:
System.out.println(list);
}
}
洗牌
Collections提供了洗牌算法,即传入一个有序的List,可以随机打乱List内部元素的顺序,效果相当于让计算机洗牌:
1
2
3
4
5
6
7
8
9
10
11
12
13
14import java.util.*;
public class Main {
public static void main(String[] args) {
List<Integer> list = new ArrayList<>();
for (int i=0; i<10; i++) {
list.add(i);
}
// 洗牌前:
System.out.println(list);
Collections.shuffle(list);
// 洗牌后:
System.out.println(list);
}
}
不可变集合
Collections还提供了一组方法把可变集合封装成不可变集合:
- 封装成不可变List:
List<T> unmodifiableList(List<? extends T> list)
- 封装成不可变Set:
Set<T> unmodifiableSet(Set<? extends T> set)
- 封装成不可变Map:
Map<K, V> unmodifiableMap(Map<? extends K, ? extends V> m)
这种封装实际上是通过创建一个代理对象,拦截掉所有修改方法实现的。我们来看看效果:
1
2
3
4
5
6
7
8
9
10public class Main {
public static void main(String[] args) {
List<String> mutable = new ArrayList<>();
mutable.add("apple");
mutable.add("pear");
// 变为不可变集合:
List<String> immutable = Collections.unmodifiableList(mutable);
immutable.add("orange"); // UnsupportedOperationException!
}
}
然而,继续对原始的可变List进行增删是可以的,并且,会直接影响到封装后的“不可变”List:
1
2
3
4
5
6
7
8
9
10
11
12import java.util.*;
public class Main {
public static void main(String[] args) {
List<String> mutable = new ArrayList<>();
mutable.add("apple");
mutable.add("pear");
// 变为不可变集合:
List<String> immutable = Collections.unmodifiableList(mutable);
mutable.add("orange");
System.out.println(immutable);
}
}
因此,如果我们希望把一个可变List封装成不可变List,那么,返回不可变List后,最好立刻扔掉可变List的引用,这样可以保证后续操作不会意外改变原始对象,从而造成“不可变”List变化了:
1
2
3
4
5
6
7
8
9
10
11
12
13import java.util.*;
public class Main {
public static void main(String[] args) {
List<String> mutable = new ArrayList<>();
mutable.add("apple");
mutable.add("pear");
// 变为不可变集合:
List<String> immutable = Collections.unmodifiableList(mutable);
// 立刻扔掉mutable的引用:
mutable = null;
System.out.println(immutable);
}
}
线程安全集合
Collections还提供了一组方法,可以把线程不安全的集合变为线程安全的集合:
- 变为线程安全的List:
List<T> synchronizedList(List<T> list)
- 变为线程安全的Set:
Set<T> synchronizedSet(Set<T> s)
- 变为线程安全的Map:
Map<K,V> synchronizedMap(Map<K,V> m)
多线程的概念我们会在后面讲。因为从Java 5开始,引入了更高效的并发集合类,所以上述这几个同步方法已经没有什么用了。
小结
Collections类提供了一组工具方法来方便使用集合类:
- 创建空集合;
- 创建单元素集合;
- 创建不可变集合;
- 排序/洗牌等操作。